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ABSTRACT
The existence of periodic solutions having prescribed enerqgy for
a Hamiltonian system of ordinary differential equations is studied.

It is shown in particular that if the Hamiltonian is of classical

type, i.e., H(p,q) = K(p,q) + V(q) where p, q ¢ H}n, and K and ¢
V satisiy KRyl =@ o Ope B gl s 0 Bipag)l »® as |pl + =,
D = {q € H!nl 0 < V(q) < 1} 1is diffeomorphic to the unit ball in

n " ;
R and \Qlf 0 on 3D, then Hamilton's eguations,

(*) p=-Hq,q=H,

have a periodic solution on H-l(l)
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SIGNIFICANCE AND EXPLANATION

iflamilton's equations are basic in the study of theoretical

mechanices. A particular class of motions of interest
are periodic ones.  For Hamiltonians which are of the
Hp,a) K(p,a) + V(q), we give sufficient conditions

Kinetic and potential energies K and V to satisfy

for (*)
form
for the

so that (*)

posscesses a periodic orbit on a prescribed energy surface.

responsihility for the wording and views expressed in this
tiptive summary lies with MRC, and not with the author of

} o '
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Periodic solutions of a Hamiltonian system

! on a prescribed energy surface
Paul H. Rabinowitz

§1. Introduction

Consi<‘er the Hamiltonian system of ordinary differential equation
(1.1) z= gH, . g =
I 0

where z = (p,q), P,qe ]Rn. and H:]Rzn-R. A basic question of

interest in the study of Hamiltonian mechanics is the existence of periodic
solutions of (l.l1) on a given energy surface. Simple examples show that
there need not exist any periodic orbits [l] . Some recent results of a

positive nature were proved simultaneously by A. Weinstein [2] and the ;

author (3] :

Theorem 1.2: Let He Cl(len, R) with H-I(l) a manifold which is 3

2n-1

diffeomorphic to S under radial projection. Then (l.l) possesses a

periodic solution on H-l(l) g

Weinstein actually obtained the special case in which H-l(l) bounds
2
a convex region and He C . A key step in his proof is the following

theorem which is of independent interest:

Theorem 1.3: Let H(p,q) = K(p,q) + V(q) where Ke Cz(Rzn.lR) ’

Ve CE(R",R) and satisfy :

Sponsorecd by the United States Army under Contract No. DAAG29-75-C-
0024 and the Office of Naval Research under Contract No. N00014-7¢-

C-0300.




(\,'l\ If D= 1gq ¢ R“ 0 = V(q) 1} , then VLl # 0 on 8D .

>

& . n n
(V,) There exists a C~ diffeomorphism  of R to R such that the

' I S ' '
open unit ball, Rl(U) , in R is diffteomorphic to D .

(Ky) For each q ¢ D, KO,q) =0 and K(p,q) is even and strictly
convex in p .

: : = =1
(K,) For fixed ge D and i

~
<
-

lim  Klap,q) = L=¥V@q) -

) e O
(N N

Then there existsa T » 0 and a solution z= (p,q) of (l.1) such that

a(0) , q(T)e 8D and qg(t)e D for 0 << t < T .

Since  H(z(t)) I for this salution, B(0)Y= p(T)= 0 . ExXtending p as an
odd function and ¢ as an even function about 0 and T and using (Ky)
then gives a 2T periodic solution ot (1.1) .
Weinstein's proof of Theorem 1.3 is based in part on earlier work of
Seifert [4] on the special case of K(p,q) = X d_li(q);‘i }‘] where (q“(‘;))
is a positive definite matrix unitformly for q e D . Roughly speaking, the
solutions of Theorem 1.3 are determined as geodesics for the Riemannian
metric K of sSeifert or the Finsler metric K of Weinstein.
A rather difterent procedure was used to prove Theorem o2 in | 3]
(See also [5] for another proof).  In this paper we will show how the
method introduced in [ 3] can be applied to treat (1o1) under a weakened
i o : ; % :
version of (K,) . T'o state it, for a,be R, let (a,Db) denote the
; R"
usual R inner product of a and b . If ¢:R'X R - R ,

¢ = @(X,y)y then Py denotes the rechet derivative of ¢ with respect




2 3
Theorem 1.4: Let H(p,q) = K(p,q) + V(q) where Ke C“(R“",R),

VeCl(Rn,R) , V satisfies (Vl) -(V,), and K satisfies
(K}) For ge D, KO0,q)=0 and (p.Kp(p.q))Rn >0 for pxO,

and (K,) . Then (l.1) possesses a periodic solution on H-l(l) .

Remark 1.5: It is straightforward to verify that (Kl) - (Kz) and (Vl) - (VZ)

imply that H—l(l) contains a compact manifold, m, which is the boundary
>

of a neighborhood ¢ of 0 in R“™ .  Moreover if (p,q)e s and qe D,

then @q = {pie Rn! (p,q) € ©} is a star-shaped region in R" . Also if

ge D and H(p,q)=1, then (p,q)eh .

>

In §2, by making a canonical transformation, the proof of Theorem
1.4 will be reduced to the special case of D = BI(O) . This transformation
reduces the smoothness of H by one derivative, but fortunately if
D= 81(0) , H need only satisfy H e Cl(Rzn.R) for our proof. Some
further modifications are made to H in §2 converting it to a more suitable
Hamiltonian for our methods. Finally in §3 we prove Theorem 1.4 for the
modified problem. Following [3], the basic idea is to obtain a solution of

(l1.1) on Il_l(l) as a critical point of the action integral

I~

(1. 6) A(z) = l (p,é) ndt
0 R

subject to the constraint




“(.')\“ 2l

A I
z(t) = (p(t), qlt)) ¢« E (S))

(\\‘l 3y R

=1

periodic functions which togethe

are square integrable. Any critical point

having a non-zero Lagrange multiplier

(1.%) z =

Since (l1.8) is a Hamiltonian system, H(z(t))
-1

z(t)e H (1) . After rescaling t, 2 becomesa 2
(k)

We do not know a direct way to find critical

the constraint (1.7) Therefore we use tl

This involves restricting A

finding critical points of the

estimates to pass to a limit and find a solution of

An interesting open question in the setting of
.4 is whether stronget

)

statements can i

i“‘(l\‘-‘:ix orbits on level sets of H . E.q. if H con:
iefinite quadratic part + higher order terms at 2 = 0

Weinstein ([1] or [6])

solutions on H(¢) for all sufticiently small 0

will be a

constant so

DNe approximation

to finite dimensional submanifold:

i

be made about the

asseorts the existence of at leas

E is the Hilbert spa
r with their first derivat
ject t (1.7) a1
. periodic solution

(1.7)

show

periodic solution of

points of A in

approximate problem together with strong «

procedure of '
xof (T} &
‘O
8 )
Theorems 1.2, 1.3,

numbaot

of di

15t8 Of a posituve

neorem ot

stin




§2. The modified problem

We begin this section by reducing the proof of Theorem 1.4 to the

following result:

Theorem 2.1: Let H(p,q) = K(p,q) + V(q) where Ke Cl(lRZn.IR) ’
ve cR", R) and K,V satisfy

(vl') 0 = V<1 in By(0) and . # 0 and 8B,(0)

(K)) For qe B(0), K(O,q)=0 and (p,K (P,q) _ >0 if p# 0
1 1 p R"

"

T 1

0
] n—
(Kz) For q e BI(O) and pe S .
lim K(ap,q) > 1~ V(q)
cl =%

Then (l.1) possesses a periodic solution on H-l(l) y

To carry out the reduction of Theorem 1.4 to Theorem 2.1, suppose the
hypotheses of Theorem 1.4 are satisfied. We extend ( to a canonical
transformation of R?.n to ]RZn in a standard fashion [7] . Set g = J(Q)

T

and p = (\pQ(Q))_TP where C~ denotes the transpose of the matrix C .

The transformation (P, Q) - (p,q) is canonical if and only if

(2.2) £Tge =

where




o " Y
choice of p, this will be the case if and only if (\‘)1 =2
. k‘\ .

99 4. 9%

padlp o 00
;”\ ’ = ‘)L) » : ()l‘ L

aQ

.

18 a symmetric matnix. o verify the symmetry, set Q = ¢(q) where
) e - . JEhe
¢ \ p=¢ P. Let ('il denote the element in the i row and
A2 J
ith column of G . Then
1 ) LS
2 . 3) (“ \l i)L‘) N ‘_k_ il
' 0 aQ 'ij — 0Q. aQ
K 1
h A l‘
b L\ ; :’ hi) Y Ay
L %, 3, 3q, L 83y m
K, ol i P m km
Al ¢ )
FA A Lo W]
\ ) 1‘ s vy 3\ O
- 1 e . w07 % o)
.“—’—, (\lr’\\‘._,k t\\l ‘\‘] t\\i ‘\‘i l{”
where ¢ (¢(q), P) # (Q 5 F) . and ¢ is the corresponding matrix of
R R

wecond partial derivatives.

be interchanaged in (2.

Thug (l.1)

L} 2
The symmetry of ¢ then shows 1 and 3 can

3)

and therefore the transformation is canonical.

transtorms to a new Hamiltonian system

\ = /\
( i) l ‘l{\\‘ » \,\ = I{“
'\\Ifln
N\ .
H(P, Q) = H(u~(Q) " P, w(Q))

.

K( « ‘(\“\’

I A A
Py wfQ)) ¢ Viu(Q)) K{PsQ) + WMQ)

—




Note in particular that /\; € Cl(IRn. R) and satisfies (Vl') . Moreover
ol A
K e CI(R:n, R) —observe the loss of a derivative— , K(0,Q) =0, and by

(Kl) for |Q| <1 and P# 0,

ap.
A\ \ A \
(Pakpl = ) B, = ) P K, ==t
R g i £} (e
= Y PK (32) = (p,k) >0
vy Sl S PR"

A\ ' '
so K satisfies (Kl) . Lastly (K,) obtains since

2

A T A
lim  K(uP,Q)= lim K@dgy Py w(Q)) > 1 - V(Q)

= 00

for [Q! .1 and Pz 0 via (K:) "

Thus to prove Theorem 1.4, it suffices to prove Theorem 2.1.
Henceforth we assume the hypotheses of Theorem 2.1 are satisfied. Let
M be as in Remark 1.5 with D replaced by Bl(O) so M 1is a compact Cl
manifold in Rln !

Lemma2.5: Let He C(R*™,R), A M=m, and H #0 on n .

If y(t) satisfies

and ¢(0) e ' , then there is a reparameterization z(t) of ¢ which

satisfies (l.1). In particular if g(t) is periodic, sois z(t) .

v




This is Lemma 3.1 of [5] . If

Proof :

immediately from the facts that (1.2) and (2.6) are Hamiltonian :
;0 the corresponding flows remain on I and that H (2) = - (2) H {
1 : 1 -
N For the C° case, a bit mo

> ¢ It \\,'hk‘rl‘ 0= e ( (\ A H\)

St‘(‘ lil .
On the basis of Lemma 2.5, to find a periodic solution of (I
it suffices to find a suitable H and find a periodic solution for

on ™ . Such a function H will be constructed next.

properties which are more amenable to the variational approach tak

than does H

By (Vl') » there are constants 6, 0 such that
(2.7} (Vq(q),q) aVlg) = =

if 1-26 = /gl =14285. Moreover by (v[') again, there is a

= 1 (6 > 0 such that if

(2.8) V(q) > 1 and gl =14+2&8, then C
Next observe that since K(0,q)= 0, there exists 1=yl S)
(2+9) K(p, q) /e i |p o and q ] )
Finally note that there is a constant Ml > 0 such that

Tt POSSEesSsSes

1)

(&t

"
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(2.10) mc {ze R2Y|z| < M} .

We can further assume that if |p| > M, and lql =1,
g 2 -

(2.11) min (K(p,q), |p|7) > 1.

For a,be R and a< b, let X(s;a,b) e C (R, R) such that

X(s:;a,b)=1if s=a; =0 if s=2b; and %1\0 if a<s<b. Set

[ = 1= x(Jpl; 5}
X(p) = 1= X(Ipl: =, 1y)

L X,(q) = X(lql;1~286, 1~ 6)
PN LIS

X3(@) = X(lal; 1,1 + 8)

X4(P) = X(|p[; M+l, M;+2)

Now we define functions V , K, H as follows

-

Vs @) = X ()X, (@) V(@) + (1%, (@) X5(@) V(a) + py(1-X5(a))]al? ;

2.13)  { Kp,a) = X, (P)X3(@ K(Bsq) + p,(1-X,(p))] B

K(p,q) + V(P, q)

E(p »q)
8

where Pys Py > 0 are free for the moment. The functions X, = X, insure
that H(z) grows like |z|2 for large |z| and the X, term forces

V(p,q) =0 if |p| < ;72 and |q| <1-28.




Lemma 2.14: For P2 Py sufficiently large,

L (P, Hp(z))]Rn > 0 with strict inequality if p# 0 and |q| <1+ &.

° I il : (e
2 (p.Hp(zann z2p,ipl if [p| =M +2.

3 If p=0, (q,ﬁq(o,q))IRn = (q,qu(O,q))Rn > 0 with strict
inequality if |ql =1- & .
Proof :
2 — X 5 2
(2.15) (0, H(2)) o = % 4(P)X3(a) By Ki(2)) Ly + 20, (1 (21

: (X;(q)K(z)—pzipl‘3><p.x4p)]Rn +Xp(@) V@)PL X 1p)

from which 1° and 2° follow via (2.12), (Vl.)’ and (Kl') provided that

p, is sufficiently large. To prove 3°, note that for p=0,

n

.16 ,H (0,
(2.16) (p Hq( c.r))]R n

= (g, V. (0,q)) _ = (I-X,(a))(q,V_(q))
q R" & "R
-G @ V@) - pylal 2 i, X, )+ 2 (X, (@) ] gl 2
PAR q Pl q q, 3q ]Rn Pl 3(aniq
so 3° follows as above if P is sufficiently large.

Henceforth we assume pys Py are large enough so that the inequali-

ties in Lemma 2 .14 are valid.

Lemma 2.17: H l(l) =M




Proot:  Suppose first that [p| = Wy - Then Xy (p)=1. If in addition

H(z) = 1, then 3° of Lemma 2.14 and the form of H implies that

'\]' < I Hence N\ ‘(\], = l \\nd
. 2
(2.18) LN RE) +p, (=N (oD Rl 4 V(@)

We canassume p, - 1 so by (2.11), (2.18) cannot be satisfied if
'l ML Henee |p| = My, N\ =1, and H(z)=1. Since lql =1,
it tollows that 2 = (p,q) e M . Conversely if |p| = Y and z ¢ m , then

(P = LE N (@) o Therefore H(z) = H(z) = 1.

Next suppose that | pl iy Honce \4(P) x L. If —l-l(z) a ],
lql =1 so \ () = 1 and
(2.19) L= KD 1 OG0\ (@) (=N, @) Vi) -
Ry (2.9),
V(q) - — _..!._k. ,'(,, .,:,. —e > ]| -
l \l“‘) \‘:(“) t (l-\.:(q)) s ;
Theretore || L= & by (2.8) and \,(q) = 0. Hence H(2)=1 and ze M

as above.  Convorsely it | pl " and 2 e, \_‘(p) = | = \;(q) and

H(z) = K(2) (PN, (@) 4 (1=, (@) V(Q)

As above K(z) o2 implies \,(q) = 0 and H(z) = H(z) = 1.




Lemmas 2.5 and 2017 reduce the proot of Theorem 2ol to tinding a

portodic solution ot (2.0) on v with H detined by (2.13).  We shall
determine such a solution but betore doing so it is convenient to make one

turther moditication to H . Sot

(2.20) H (2) = H(z) + ¢|p .

Note that

(2.2 (0 0L P(:nkn e 22l pl®

tor all = e l\":” . Our goal now s to tind a periodic solution ot

(2.22) z= JH_,

on H:l(l) tor all small ¢ - 0 and let ¢ <0 to get a periodic solution ot

(2.06) on M .

\'




§3. The existence proof

Suppose z(t) 1s a periodic solution of (2.22). Since its period T

is a priori unknown, it is convenient to make the change of time variable

21 -
t - T t= X\ lt s0 that (2.22) becomes
(3.1) z=\9H

€2

»

with z now a 2/ periodic function., The parameter A must be determined

in the course ot the proof.

2 Zn
Set L = (Wl' (Sl)) : and for ze¢ E, let v
l -‘:“ ——
V(z)=5- [ TH_(z)dt.
&l .U I3

Define

S= {ze E|¥(2) = 1)

As was noted in the introduction, any critical point of

on S with a nonzero Lagrange multiplier provides a solution of (3.1) on

H:l(l) .« Since we know of no direct method to tind such critical points, we

begin with an approximation argument.




e
Let By ol denote the usual orthonormal basts in R“" and set

—
(1]

span {(slnjt)ok. (cos jt)oklo Sjsm, |lsks 2n}

and bm = 5SN Em .

Lemma 3.2 ; Sm is a compact Cl manifold which bounds a neighborhood

of O in E_ .
m

Proof : For z,{ e Em o b ‘!"(z)z__ denotes the Frechet derivative of

at z actingon ¢ ,

5
. NIRRT S T
(3.3) f{2)y = 55 "’0 (Hez(‘:)'g)R&n s
Hence by (2.21),
' E ‘:
(3.4) Fi(z)(p,0) = = |pfl , .
L

If p=0, by 3° of Lemma 2.14,

(3.5) Mz)(0,q) >0

unless [q(l <~ 1- 6. Butthen

Al
! -

0, q) = 3h ’ (1 = \,(qQ)) V(q)dt . 1




s A N

16

so (0,q)# Sm . Hence ¥'(z)# 0 for z« Sm and by the implicit function
3 - wl
theorem, Sm is @ C manifold in [:m.

Next observe that if z ¢ E_ and | 2|l =l

»

>
- -

I ‘: z
(3.6) ¥(rz) = 5 { Loy (=X rpN | pl™ 4 p)(1-X5(ra)|q|"] dt =

as r -+ . Hence Sm is compact. Lastly observe that for (0, q) ¢ Em
with [lqll , =1, by (3.5) - (3.6) there is a unique r = r(q) such that
L

-

¥(0,rq) =1 . Since ¥(p,q)=¥0,q), (3.4) then shows if

laqll 5 1@ ql ) (if q#0) and [p|l , =1, there is a unique
Lu 'L")' LA.-

s = s(p,q) > 0 such that ¥(sp,q)=1. It follows that Sm bounds a 1
neighborhood of © in Em which for fixed q is star-shaped with respect

to p . The lemma is proved.

Next we exploit some invariance properties inherent in our spaces .!
- 0
and operators. Let II;] 3 Em » £ denote respectively the subspaces of

Em on which A is positive definite, negative definite, and null. Itis

easy to represent these spaces explicitly, namely

(5
il

= span{vk!l =k =2n}),

m
"

m = Skan {(sinjt)ok—(cos jt)ok”], (cos it)okﬂsin jt)olun“ <j=m,

1+~ k= n}

m
1}

. 5. dlenei e e {8V, =fsinitie. [l = i =
'm span{(stnjt)(k-l(n()bjt)(“n.(cosjt)tk (blnjt)(k_“] 1= m:

1=k = n}.




These subspaces are orthogonal under the L‘: inner product and are

invariant under the family of mappings z(t) - z(t+ 1) forall ve [0,21] .
This family of mappings induces an Sl action on Em (see [8] or

[3])- A cohomological index theory for compact Lie group actions developed

in [8] can be applied to our setup here. Let € m denote the family of

subsets of Em\ {0} which are invariant under the above Sl action, i.e.

BC e implies z(t+71)e¢ B forall 1e¢ [0,2/1] whenever z(t)e B .

A mapping f : Em - Em will be called equivariant if f : E‘m - €m .

Similarly a mapping g : [‘.m - R will be called equivariant if

g(z(t+ 1)) = g(z(t)) forall 1€ [0,2/] and ze Em . Note that A and

¥ are equivariant mappings.
Lemma 3.7: There is an index theory, i.e. a mapping i : t’m ~IN U {~}
A\
which possesses the following properties: If B,B « em 5
° L ) A 0
1 i(B) ~ v ifand only if BNE =0 .
N\ ey
2 If there is an fe C(B,B) with f equivariant, then i(B) ~ i(B) .

° o 5
3 i(BU B) = i(B) + i(B) .

4° If F is an invariant subspace of E;} ® En—] and $ is the boundary of a
bounded open invariant neighborhood of 0 in F, then i(8) = —l,— dim F .
5° If Be em with i(B) = mn, F is an invariant subspace of tm

» 0 4
containing E~ and having dim F = 2mn + 2n+ 2, then BNF= 0.




Proof: The definition of the index and proofs of 1° - 4° as well as other
properties of index can be found in §6-7 of [8] and 5° is Lemma l.24

of [3].

An immediate consequence of Lemma 3.7 is

Lemma 3.8: i(Sm n Em) = mn .

Proof: Since dim Em =2mn and Em is an invariant subspace of

. PV . e e )
Emu Em » Lemma 3.2 implies Sm n Em is the boundary of an open

neighborhood @ of 0 in Er; . The equivariance of ¢ implies §) ¢ é‘m .

Hence the result follows from 4° of Lemma 3.7.

At this point it is convenient to further assume that H (and therefore

— & ol
Hg) ¢« C (R n,R) . We will return to the Cl case later. Since A is an
equivariant mapping defined on Sm € Em » there is a standard method for

trying to find critical values of AIS a Define

m
(3.9) ¥, e inf max A(z) l =j=<mn
Yo BCS. zeB
m
i(B) = j
Lemma 3.10: Y,’ m is a negative critical value of A g °? l=j=mn.
’ gn)
Proof:  Since 1(bm n Em) = mn,
< < - ’ )
Yl,m mn, m Sm‘:‘ - S
m m




>

Since H e C7, the remainder of the proof is standard. See e.g. Lemma

1.16 in [3] .

Not all ot the critical values obtained in Lemma 3.10 are of use to us.

E.g. since Al S is not bounded from below, Y1 o " as m-w .
[

.

Accordingly we focus our attentionon ¢ _ = Y . Heuristically ¢

m mn, m m
is the largest negative critical value that Als possesses. Let Zn be a
critical point corresponding to Cm v Yees A(zm) = Cm and

(3.11) Az 0g =X Y2 )4 = 0

for all ¢ ¢ klm . To obtain a solution of (3.1), we will find upper and
o r Al i \“; "> 4 | » QO
lower bounds for ¢ oy for o 9 and finally bounds for | zmxl " These

estimates will be determined in the following series of lemmas.

Lemma 3.12: There are constants gy 0 and independent of m such

that
(3.13) qp \‘m‘ ay e
Moreover there is an e, » 0 such that if ¢« (0, to] » o and a, are

independent of

Proof: Since H (0)=0, (2.13) shows there is a constant M, > 0 and

-

independent of ¢ such that

v




S ——

20
— | 2
(3.14) H (z) = 3 + (M, +¢)|z]
P
forall ze R°". Choosing z = z(t)e S, (3.14) vields
2% 5 FE 2
l=717 | Hﬁ(z)dt‘;lT* =zl ,.
VA 0 € & PAR IS 1
Hence
1 1
T P y >
l > ———‘v S s s =
(3.15) Ilz\lL& =l 2y 2% |
for all z ¢ S provided that 0 = ¢ = €g = MZ which choice we make. v

Similarly (2.13) shows if p3 = min (pl, p,), thereis a constant a; > 0

and independent of ¢ such that

(3.16) H (2) =

for all z e R')'n . Again choosing z = z(t)e S in (3.16) gives

L
e 414 o) 2
(3.17) izl , = —— M,
 ASEE e ISR

Thus we have upper and lower bounds for z ¢ S independent of ee (0, CO] %

To get the bounds for ¢_, note first that the form of A and E[; imply

(3.18) Sm = max A(z) = max {A(z)| z e I‘,u_], | 21| 5 = M‘,)}
2E S_E s
m m

)
= =i M3 \l&




To get the lower bound, let

+ 0

F=z=E & E @ span {(sin t)cl 4+ (COs t)vk”, (cos t)vl - (sin t)oku1

. = : : ! : ]
Then dimF=2mn +2n+42, F DO E , and F is an invariant subspace of
E, - Thus by 5° of Lemma 3.7, if Be §,, and i(B) = mn, then

BnNnFz 0. Choosing any Ze BN F shows

(3.19) min A = A(Z) = max A .
Fn Sm B

Since (3.19) holds for all BC S in satisfying i(B) ~ mn, (3.17) and

(3.19) vyield

(3.20) € > min A = minf{A(z)|ze F, !z I, = M_*}
FNS -
m
2
= =i M4 Qp -

Remark 3.21: We now show how to treat the case in which H and theretore

— )
H_ is merely assumed to belong to Cl(ll“n. R) . Let Vk(Q) ’ Kk(;:) be

: ; ; ; -l
sequences of functions which converge uniformly in the C° norm to V and
> |
- : an ! | .
K respectively on {(p,q)e R* ||{pl = M, +2,!ql =1+ 8} . Replacina

V and K by Vk ’ Kk respectively in (2.13) and (2.20) defines functions

>

- = — - * . =l &
Hk(z) » HkF(z) where Hks(z) - Hk(z) uniformly in the C° norm on R

n

as k-wx . Set
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{(2) = 5= j(; A (2)dt .

Then \?k is equivariant on Em and ‘Yk* ¥ in the

Em . Moreover (3.4) - (3.6) show that for large

b
of 0. Bythe C” case, for each such k,

k .
Y]. o inf -1 max A(z),
i BC ‘{’k (1) ze¢ B
i(B) = j

is a negative critical value of Al égl(l) nE -
k K =
“m -~ ¥ '

k
o >
mn’ m L\ t -‘.‘m

critical points are uniformly bounded in the finit.

. . ) 1
- ¥ uniformly in C

I on Em » a subsequence of
critical point z af A ‘on 8. Define: €. = Al
¢ m Sl Delin m ‘
is a critical value of A on Sm « An inspection of ti

shows the estimates (3.14) - (3.17) with S replac

-1 :
:.. (1) can be assumed independent of k as well as

bounds (3.18) and (3.20)

k
hold for c
m

large kK . Letting k +x, we see (3.13)

For the remainder of
|

the proof of Theorem 2.
The next lemma providoes
Ther

Lemma 3.22 ¢ are constants

that

compact manifold in Em which s the boundary of . °

be a corresponding critical point.

dimensional space E

independently of
holds for
I'

dependent bounds for A

(&%)
-

Cl norm uniformly on

bay ie s o

inded neighborhood

L=

I
3
o}

We will only study

Since these

and
m
}

converges to a

50 by definition c
'“! C ) t n]

proot of Lemma 3.12

t where appropriate by

i and ¢ . Hence the

m, €, and
(= .
m

we assume we are in

0 and independent of m such
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3 v23) - = .
' 1 ‘'m =2
Proof : From (3.11) with . u‘“]. qm) and ¢ = (pm, 0), we find
) p )
(3.24) c. = [ (p..,q) .dt=x_ [ (o .H (z_)) _dt.
m n M N m - €p n
1 0 1 "R 1 g m MR
Since c¢_ Qi (2.2)) shows Xt 0 . Moreover by (3.24), (2.15),
e
Iina §35-37)
\\I'] )
- > + g /
M -(p: .)M4
m
which together with (3.13) gives the upper bound for \m .
A lower bound for \ is more difficult to obtain. In fact we will

m

only obtain an indirect estimate. Thus suppose \m - - as m -au

along some subsequence. Since by (2.21),
2 )
“m o g : > 5
e / H‘_], i P( .1‘1 ) " It = dell me‘ s 3
N 0 ' R il
t intearal

id to 0 as m e~ along some subsequence. But (3.25) consists of
five non neaative terms (see 2.25), so each term tends to 0 as m -

n particular el p , = 0 and it
' mo e




T,(0) = measure {t ¢ [0,27] | Pp(t) = o},

t! for all o ay, :m(o) -0 as m-—-« along our subsequence. Since

A g
l ‘(:m) b .3_ .g [\4(pm)\3(qm) K(Zm) +

‘ - 2
Pa=Xy )y Iop 1™ + elpp 1% + Xy(pp) X5 (q, ) WU ) +

2

(=X, (ap ) X3(q ) a) + py(1-X3(q D q ] dt, i
it casily follows that the first four terms on the right hand side of (3.26)
tend to 0 as m—. . Moreover choosing ¢ = (O,qm) in (3.11) vyields '
2 2m
(3.27) B-.( (q_,H = X
T Ome BB ndt= [ [l Xytpy) Xytay) Ky |
flags \A}(pm)K(zm)\jq(qm))an T, \I(pm)\z(qm)vq(qm))mn
F e N (PV(@g )X, (e ) 0 + (g (l-\z(qm))\3(qm)vq(qm))]Rn
>
= e ¥ L = it | pe
(T ~_;(qm)V(qm)\‘:q(qm))an @ (=X, (@ NDV(qp)=pylag | )\5q(qm))an

>
+ le(l-\i(qm))lqml ] dt .

ince K(O0,q) = 0, Kq(ﬂ »q) = 0 and the first two terms on the right hand side
(3.27) coto 0 as m =« along our subsequence. Likewise as in

(3.26) the next two terms in (3.27) tend to 0 as m-—<-« . The remaining

tour terms are non negative and since the left hand side of (3.27) tends to

0, cach of these terms also goes to 0 as m--« . In particular
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g 2
.28} o 0xtag)lag|® dt o
and
2
3.2 g
3:29) f;) (=X ta)Xg(ay) (a » Vo)), L0

as m—-« . On examining (3.26) again and using (3.28), we conclude

that

21
1 %
(3.30) o jo (1-X,(a,))X;5(q ) V(q, ) dt =1

as m—-w« . But (l—xz(s))\j(s) is nonzero only for 1 =26 - s 1+ 6.

Hence by (2.7) and (3.30),

)
(o

1
(3.31) = (f) (=35 () N30 p) (B » Vo)

L

> —= -\ (G 1 dt -

Z f ( .Z(qm)) 3 1m)V(qm) 2 i
as m <. along our subsoguence, contrar: to (3.29) . Conscequently
there must exist P a4 in the statement of tiic lemma.

One Linalb cxiimate s reguired s

Lemma 3 «3d ¢ The o i o« voiatant M 0 and independent of m such that

t

M




Proof : Using (3.11) with ¢ = (qm. -i)m) and the Schwarz inequality yields

(3.33) Iz,

= I\l TH ez )l 4

L2

Since }_{E(z) grows at most linearly in z, the bound for || zmll g how

follows from (3.17), (3.33), and (3.23).

Combining the estimates given in the above lemmas now gives an

existence result.

Lemma 3.34: There exists a solution ('\e' ze) of (3.1) with

) 1.l .2n = _
z, ¢ C(S,R ) and He(ze(t)) ® 1.

Proof : Lemmas 3.22 and 3.32 and the Subolev imbedding theorem imply that
along some subsequence Zn =%, weakly in E and strongly in L% and

o ~ - - v |
’\m ,\E\ 0 where (\E.ze) satisfies (3.11) forall ¢ e mk‘ G

Hence z ¢ S and is a weak solution of (3.1) with \ = \t‘ . It readily

|
m

follows that z  satisfles (3.1) pointwise a.c.  But since ﬁ{,"("‘?) is
continuous, z, must be continuously differentiable. Hence 2 is a
classical solution of (3.1). Lastly ﬁF(zF) = constant since (3.1) is a

Hamiltonian system. Therefore z, € 8 implies that ﬂF(;:ﬁ) ey
It remains to let ¢ -0 and obtain a solution of

zs,\,?}_{z




on M owhich via previouws remarks will then complete the proot ot Theorem

2.1, We begtn with ¢ tndependent a priott bounds tor (A, 2) tor 20

pertodic solutions of (3.1 on . Recall that £, was defined in

lemma 3,12, it in (&.8), and Ml in (2.10).

_ A : ol —an
Lemma 3.35:  Let (v, 2) bea solution ot (3.1) with ze C(5, R o

ANMz)=s ¢ < 0 ; ana H:(.‘:\ el ¢ H Yt lutn(;n,“ .'.M.;) and ¢ e |0, ,ll .

then thete ate constants Mo, = M - 0 and independent ot . such that
{
\ \ &
I\L., My
(3.50) \
zll ) M

thoot As carllet (£ 2= (p,a),

K, & = = A7 ) 2 ( -
(3.37) 3 J (P H =) at
U \
it H(2)=1, ql =1 via e.g. Lemma &.17 and the definition ot H_ .
Moreover the torm of H tmplies 'pi Ml . Hence the integrand on the
t

right hand stde of (3.37) ts bounded trom above by a constant independent ot

s trom which the upper bound tor A tollows.

l'o obtain the lower bound, et

o) = measure {(te [0,20] ' po) = o




Then

21

(3.38) X

-

) (q, Hw(z))Rn dt = Il +1,
where Il (resp. 1,) denotes the integral over the set in which |p(t)| < o
(resp. | p(t)| = 0) and o s free for now. The bounds for |p|, |ql

on Hil(l) imply that there is a constant M > 0 such that
t

(3.39) l(q, Ht,q(z”RuJ = M

tor all ¢ e |0, :'0] and 2 = (p,q) € ll:_l(l) . Therefore (3.38) - (3.39)

imply that

(3 .40 E . -

(3.40) : ll 1(0)M
Choosing

(3.41) 0 s

\l(p) = 0 and
(3.42) Ho(2) = 1= K(p, @) + (1=, (@) V(@) + el p|™ .

Hence by (2.9), our cholce of ¢, (3.42), and (2.8), |q] >1=-6.

Consequently  \;(q) = 0 and the integrand in the ll term is




(q, KQ(Z”R” + (q, Vq(q))Rn
Set

|

w(0) = max{uq.xq(z))nnl lql =1, |pl = o).

Since Kq(O,q): 0, w(o)=-0 as o0 +~0. Thus by (2.8) and (2.7) for
g< “l/’..,. )
I = (21 = 7(0)) (5 - w(0)) .

Further choose o0 such that

(3.43) w(0) =

=]

Then

- AT Q
I =(&n - 1(0)) §
and by (3.40)
£ » &1 e
kol T(o)(M44).

Thus if

.
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e ko i

(3.44) o) < § = i =
€ 5 anr
(3.45) <=9

If, on the other hand, (o) =§¢ , by (3.37) and (3.42),

2

(p.Kp(Z))Rn dt = 1(0) Y(0) = £Y(0)

(3.46)

b [¢]
v

where

Y(o)=min{(p,K (2))  [o=|p| =M, [qf =1} >0.
R
In any event, (3.45) - (3.46) show

c il -
(3.47) X = min (57, £Y(0) = M,

where o is now fixed and satisfies (3.41) and (3.43). Thus (3.47)
provides the desired lower bound on X .
Finally the differential equation (3.1) coupled with our upper and

lower bounds for A and the pointwise bounds for 2(t) yield the bound for

Izl -
cl

Completion of proof of Theorem 2.1: Let ¢—-0 . The bounds (3.36) and

(3.13) which hold for S A(ze) together with the differential equation




(3.1) show a subsequence of (,\E, ze) converge to a classical solution

(A, 2z) of

(3.48) 2

il
S
A
Tl

with z 211 periodic and z e In .

31
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